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I. INTRODUCTION

FORmany years the concept of sweepback has been used with beneficial

effect in raising the economical cruisine speed of subsonic aircraft. As

we try to extend this speed still further it is necessary at the same time

to increase the angle of sweep and, usually, to decrease the aspect ratio,

and it becomes more and more difficult to obtain the full theoretical

benefits of sweepback, largely because of adverse effects on thc root and

tips of the wings; in the transonic speed range these adverse effects are

liable to cover the whole span unless special measures are taken. It is

the purpose of the present paper to outline some of the principal ways

of remedying these defects and of extending the speed range in which

sweptback wings may usefully be used; cruise Mach numbers up to about

2 are envisaged, and in fact the upper limit may well be set by structural

and low-speed aerodynamic considerstions rather than by the cruising

aerodynamics").

The physical basis of the method is to shape the wings and fuselaee

together in such a way that the chordwise pressure distribution on the
wings at the design condition should be independent of spanwise position,

and that the component of local Mach number normal to the fully swept

isobars thus obtained should be everywhere less than one. Such an ideal

state of affairs is sketched in Fie. I. In this way it should be possible to

ensure that the flow over the wings is free from shock waves and that

the wine wave drae is low. If the cruising Mach number exceeds the critical

for a low-drae body of revolution having the same leneth and volume

as the wing-fuselaec combination considered, some overall wave drag

is of course inevitable, and the same is true at all supersonic speeds with

regard to wave drag due to lift. It is not claimed that the present methods
will lead to strict "minimum wave drag" confieurations in any ideal mathe-
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matical sense, but it is felt that, because the type of flow specified is
a physically reasonable one, it should be possible to realize it in practice.

Provided that the wings are not too highly tapered, the flow over them
will then be equivalent in many ways to that over an infinite yawed wing
having the same basic pressure distribution and sweepback  ck.  The first
step in the design process must thus be to consider the two-dimensional
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FIG. I. An ideal wing pressure distribution.

flow, at. a Mach number  M„  cos  Gb obtained by resolving the freestream
Mach number  M„  normal to the wing leading edge, past a normal section
of the yawed wine; this will have an incidence a sec and thickness/chord
ratio  -r sec 0, and eive a lift coefficient CI see 0, where a, 2 and CI refer
to the yawed wing.* It should therefore be possible to incorporate the
refinements in two-dimensional design methods described by Pearcey(')
into a highly swept configuration.

The tools that enable us to attempt this include choice of the wing plan-
form, shaping the fuselage and warping the wings, particularly near the
root and tips. Before going on to describe these techniques in detail, it
is instructive to consider briefly the physical nature of the transonic flow
about a typical swept wing that has not been treated in this way,
so as to emphasize some of the phenomena that we wish to avoid in
a more refined design. We shall also present some recent experimental
evidence of the equivalence between yawed and two-dimensional wings,
referred to above.

*  CL  and T will be the same as for the actual finite configuration but a will in general

be different.
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2. THE FLOW DEVELOPMENT ABOUT UN FREATED SWEPTBACK WINGS

In discussing briefly the general flow development(3) with stream Mach
number, it is convenient to consider a simple, plane wing whose planform,
which may be tapered, is defined by straight lines. At moderate subsonic
speeds and if the lift is not large, an important effect of the sweep is to move
the loading forward at the tip, and rearward at the root, compared with

Separated flow
region

FIG. 2. Flow development about simple swept-back wing with increasing stream Mach
number.
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the corresponding yawed wing; the highest local velocities, and hence

the first appearance of supersonic flow, occur in the tip region. Unfortu-

nately, the isobars near the wing tip lose much of their sweep and hence

the supersonic flow is associated with a shock wave (the initial tip shock).

This is comparatively weak and lies almost normal to the oncomine stream;

though limited in spanwise extent from the wing tip (Fig. 2(a)), it can

extend to considerable distances above and below the wing. The initial

tip shock moves rearwards over the wine surface as the stream Mach

number is further increased, but its influence on the wing is limited by
the appearance of a second shock (the rear shock) which usually forms

at about the same time. The rear shock rapidly develops to affect a large
part of the wine span and in particular the flow just ahead of the initial

tip shock (Fig. 2(b)).
The rear shock may be regarded as associated primarily with conditions

at the wing root; the effect of the section thickness is to turn the local

flow inboard, an effect which near the root must be constrained by the

body surface and the need for flow symmetry at the centre line. The inward-

turnine flow is therefore straightened by a compression system propa-

gating outward from the root which coalesces on the outer part of the

wine to form a shockwave.
With increasing stream Mach number, the rear shock moves aft more

rapidly than the initial tip shock which is overtaken and disappears. At

the same time, the region of diffuse recompression at the inboard side

of the rear shock contracts as the shock spreads towards the root. At

a sufficiently hieh Mach number the rear shock reaches the trailing edge

and this condition will be achieved earlier for a delta wine than, say, for

an untapered wing with the same leading-edge sweep. At some stage,

the rear shock may become sufficiently strong to causc boundary-layer
separation, with a consequent modification of both the surface flow

behind the shock and the overall wing characteristics. The development of

the rear shock, particularly over the inner part of the wing, may be

influenced by the shock which forms on the central body at hieh subsonic

speeds and in certain cases (e.e. a hiehly curved body and a thick wing)

a complex interaction may take place.

The high local flow velocities present close to the leading edee over
the outer part of the wing lead to large chordwise pressure gradients in

that reeion and, at a sufficiently high incidence, to flow separation at the

leading edge. This starts near the tip and spreads inboard w ith increasing

incidence. For leading-edge sweeps greater than about 30, the separated

flow rolls up to form a partspan vortex lyine obliquely across the wing.

There is usually little effect of stream Mach number on the onset and

development of the leading-edee separation, except when the leading
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edge is very blunt. At high subsonic stream speeds however, the vortex
may interact with, and be distorted by, the rear shock lying over the after
part of the wing. Above a certain stream Mach number the flow changes
in type; the leading-edge separation is suppressed, the flow passes smoothly
around the leading edge and passes through a shockwave (the forward
shock) which appears to originate close to the leading edge at some span-
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from separated
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FIG. 3. Complete flow pattern on 500 swept wing:  M =  0-95, a = 100.

wise position and to turn back over the wing surface outboard of this
station (Fig. 2(c)). The forward shock is in fact the boundary of disturb-
ances from the inboard part of the wing leading edge, which because
of the higher local supersonic Mach number, propagate over the outer
wing in a direction more highly swept than the leading edge.

The Mach number component normal to the leading edge  (M,  cos 0)
for which the flow attachment occurs varies considerably, depending on
the wing sweep and more particularly on the leading edge profile; in
general the component has a value between about OE55 and 0.90.

As the stream Mach number is increased beyond that necessary for flow
attachment, the forward shock moves inboard and rearward (but with
almost constant geometric sweep) and hence at some stage intersects the
rear shock. Outboard of this intersection a strong shock forms (the outboard

17
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shock) which frequently induces a severe flow separation, even though
the flow is attached behind both the forward and rear shock (Fig. 2(d)).
When separation is present behind either of these shocks, a vortex tends
to form and the associated outflow modifies the flow structure outboard
and becomes an important factor in the ultimate breakdown in the at-
tached type of leading-edge flow over the wing. Separation then takes place

0

a.

G

1• 0

Mo

Leading-edge separation

Appearance of rear shock

0 Appearance of forward shock

0 Appearance of outboard shock,withseparation to rear

0 Separation behind rear shock

Separation behind forward shock

Zone in which initial tip shock exists

FIG. 4. Typical boundary diagram for wing of about 500 sweep.

along almost the entire leading edge; the shockwaves no longer have
a direct influence upon the surface pressures, which are dominated by
a large part-span vertex as at lower, and subsonic, stream speeds.

Many of the features described briefly above are shown in the surface-
film pattern of Fig. 3, obtained at a Mach number of 0.95.Typical bound-
aries for a wing of about 50 sweep are included as Fig. 4.

Complex flows similar to Fig. 3 are largely due to the three-dimensional
nature of the wing flow and hence to the dominance of the root and tip
influence at transonic speeds. The root affects the flow strongly behind
the forward shock (which therefore indicates the limit of the root influ-
ence) and the flow in this reeion is partly conical in character. The tip
influence at transonic speeds is delineated by small disturbance from
near the tip leading edge (the tip shock). Ahead of the forward, outboard
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and tip shocks the flow is almost free from constraint effect due to the finite
span of the wing and has therefore marked two-dimensional characteristics.
The extent of this zone depends on the shock positions which are in turn de-
pendent on wing planform, section incidence and stream Mach number.
By making the aspect ratio of the wing very large, or by deliberately
attempting to reduce the root and tip influence on a given wing, flow

FIG. 5. Validity of simple sweepback concept for component Mach number
of 0.5 normal to leading edge. 10% thick aerofoil section; no treatment of model—

wall junctions.

can be obtained over a larger portion of the wing which closely resembles
that postulated in the simple sweepback theory and which is so highly
desirable.

Many attempts have been made to show the relationship between swept-
wing flow and that on the equivalent two-dimensional section at a com-
ponent Mach number  Mo  cos 0. The precision of this relationship is com-
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paratively easy to demonstate when  M,  cos is not large, as in Fig. 5.
At higher values it is extremely difficult to minimize the effects of the
finite wing aspect ratio. Recent experiments at the NPL however have
given satisfactory results, surface pressures, separation boundaries and
shock position correlating well on the basis of the simple sweep theory.
Typical results are included as Fig. 6. Much of the success must be attrib-
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FIG. 6. Application of simple sweepback theory to results from plane half-wing with
double-wedge section and variable sweep. No root treatment.

uted to the fact that for this particular wing profile (7",%thick symme-
trical double wedge) a shock similar in nature to the forward shock orig-
inates from the ridge line at mid-chord ; except at high incidence the
local velocities in the leading-edge region are relatively low. A large part
of the NA, ing behaves as a yawed two-dimensional section and the zone
subject to a severe root influence is small. The double-wedge section,
though not suitable for real swept back wings, is valuable nevertheless
in allowing the underlying structure and unity of swept-wing flow to be
demon strated.

In practice, the wing section is chosen largely from two-dimensional
considerations (such as a high drag-rise Mach number) but since the
wing aspect ratio is usually too small to allow the natural attrition of
root and tip influences to take place, judicious changes in the wing plan-
form, profile and root contour are necessary to modify the flow about the
untreated wing, replacing it by one close to the yawed-wing model and
thus approaching the optimum aerodynamic design. Methods that are
available for effecting such changes will now be considered.



Aerodynamic Design of Swept Wings and Bodies 261

3. WING PLANFORM DESIGN

As pointed out in the previous section, swept vsings with conventional

straight-edged planforms have two principal defects in the transonic speed

range. The first is that, particularly when the planform is highly tapered,

the suction peaks near the leading edge of an uncambered wing at inci-

dence increase rapidly towards the tips, and the associated high values

of the local Mach number soon exceed the critical value normal to the

isobars, so that shockwaves form (Fig. 2) prematurely in this region.

The second is that the sharp corner at the tip leading edge produced a "tip

shock" which, though seldom strong enough in itself to cause boundary

layer separation or high drag, is instrumental in unloading the rear part

of the wing near the tip and thereby reducing its efficiency as a lifting
surface. Fortunately, it is possible in principle to attend to both these

defects together by suitable design of the wing planform.
The suction peaks which occur in a real flow are associated in

linearized theory with the singularity in the local loading at the leading

edge. Using the notation of Fig. 7, we can define the strength a of

this singularity by

1
as —> 0 (1)

4a 2e

where / is the difference in pressure coefficient between the upper and

lower surface of a plane wing at incidence a and e is the local chordwise
position. In the simple form taken by lifting surface theory at M = 1(4'5)
it can be shown that, downstream of the Mach line from the root trailing

edge (x = 1),

a --. H j I --k2
v dv
c  dx1

(2)

where k — 	 c is  the local chord and H(x1) is the function defined
y tan (/),

by Manglert", which is determined, through a rather complicated integral

equation, from the shape of the leading edge upstream of x = x1; for

x <  1, H 1/1—k2 is to be replaced by 1. For a highly tapered wing with

straight leading and trailing edges I/ j 1- -k2 = 1 throughout, and the

leading edge singularity takes the form shown in Fig. 7; the rapid increase

towards the wing tip is clearly seen.

In order to avoid this increase, we first choose the initial shape of the

leading edge, upstream of x = 1, in an arbitrary way—usually straight

with a suitable amount of basic taper—and then downstream of x = 1,
fix the strength a of the singularity at the constant value a (cf. Fig. 7).
Equation (2) then becomes an integro-differential equation for .v1(y). and
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thus the desired shape of the leading edge can, in principle, be found.
Details are given in ref. 6 of an approximate method of doing this which
should be of adequate accuracy for most practical purposes. Keeping the
trailing edge straight and at a fixed angle of sweepback4„ several families
of planforms, each of varying aspect ratio, have been found"). Three

0

ce--I

Ot c(y) — x=I

\\

V
X

Leading edge
singularity

o.

Cr.

FIG. 7. Typical wing planform and variation of leading edge singularity.

typical members of the simplest and most useful family are shown in Fig. 8.
Variation of the basic trailing edge sweep can be introduced by multi-
plying all transverse (y) dimensions by a constant, keeping all longitudinal
(x) dimensions fixed.

An important feature of these planforms is that, once the leading edge
singularity is held constant and independent of spanwiseposition, so also
to a large extent is the whole shape of the chordwiseloading curves. This
is illustrated in Fig. 9, which shows chordwise loading curves at various
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spanwise position for one of the wings (C) of Fig. 8. As a result, the theo-

retical isobars (for a thin plane wing) follow closely the lines of constant

chordwise position in the tip region and are fully swept there (see Fie. 8),

while there is no loss of loading anywhere on the wing. The local lift coef-

ficient varies little across the span, and since the distribution of chord

c(y) is not far from elliptical, the spanwise loading curves give favourable

theoretical induced drag factors, not exceeding 1.05 in any of the examples

given.

1

2  .0

Y/s =0
0.15

0.29

0-44
0.58

0.71
0.84

4
5
6

7

2

3

0
0 0 -5 I -0

FIG. 9. Chordwise loading curves (planform C of Fig. 8)

Althoueh the adoption of a planform designed in this way should by

itself be most efficaceous when the wing is uncambered, it is not in fact pro-

posed to use an uncambered wine; as described later in Section 5, it is

essential to apply suitable camber, twist and fuselage shaping before the

full benefits of wing design can be obtained, and this can in principle be

done whatever the wing planform, at least for one particular design in-

cidence or lift coefficient. The special planforms will still have two ad-

vantages, however; in off design conditions they should help retain a satis-

factory loading and isobar pattern in the tip region, and they will also

reduce the amount of variation in camber and twist required there.
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4. THICKNESS EFFECTS

Having chosen the wing planform and basic section (cf. ref. 2), it is now
necessary to consider the detailed shaping of the w ing, and fuselage in
order to obtain the full benefit of the wing sweep and section design. At
the present stage it is necessary to use linearized theory for most of the
work, and it is therefore convenient to split the design process into two
parts, dealing separately with the effects of thickness (at zero incidence)
and lift.

The problem of designing a symmetrical wing-fuselage combination
at zero incidence so as to minimize the wave drag has of course been
studied for many years, and two apparently distinct methods of approach

have been evolved. The first is that of Whitcomb".8), who from consid-
erations of the overall flow pattern and forces developed the Area Rule
and its more recent extensions. The second, due to Kiichemann and his
collaborators(9), is based on considerations of the details of the flow and
pressure distribution, particularly near the wing-fuselage junction; the
fundamental idea is the same as that of the present paper, to shape the
fuselage and if necessary the wing as well so as to achieve a straight, fully
swept, sub-critical isobar pattern right up to the junction. This idea was
first put forward for high subsonic speedsm, but the principle is equally

,‘ The wing has a 7 112 0h thick
symmetrical parabolic section

%
I Peak suction lines — —

O. 5 \CP

(a) Unwaisted Sears Haack
fuselage

0

 O
\\'=11)- 15
‘');)-20

-0-30

(1-30
025

(b) Fuselage waisted
by M=1 area rule

=0. 05
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-0 I 5

0- 1 0

'0
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FIG. 10. Effect of area rule waisting on isobar patterns. N.P.L. experiments: a = 0
M =  1.0.
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applicable at sonic or supersonic speeds; an extension of the design method
to the latter case has recently been developed by Bazley (unpublished).
At present, however, the method is only able to deal with the pressure
at the actual junction (or at most at one or two other discrete stations
along the wing), and also suffers from the use of some undesirable approxi-
mations with regard to the wing-fuselage interference. In spite of these
limitations it has proved successful in practice both at subsonic Lnd low
supersonic (up to  M = 1.2) speeds.
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The numerals on the isobars show the values of CDtan 4, 


FIG. 11. Theoretical isobar patterns: M  = 1, a = 0 for wing-fuselage combinations
waisted according to the sonic area rule.

Although the two methods appear at first sight entirely different, it is
now clear that there is in fact a considerable measure of agreement be-
tween them; this is particularly true when the basic wing thickness and
sweep are such that the equivalent infinite yawed wing would be sub-
critical that is, below the drag rise and this is just the case where the
area rule is most successful. For example, Fig. 10 shows some results of
recent (unpublished) tests at the National Physical Laboratory on a simple
wing-fuselage combination at zero incidence, with and without fuselage
waisting according to the sonic area rule; the improvement in the
isobar pattern produced by the waisting can be clearly seen. A similar
conclusion was reached theoretically by Byrd("), who calculated the pres-
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sure distribution at M = 1 on an infinite swept wing mounted on a long

circular cylinder, again waisted according to the sonic area rule; the isobar
patterns for two widely different wing section (Fig. 11) are very satis-

factory. Further theoretical and experimental evidence on this point is
given in ref. 11.

It therefore seems evident that the ideal solution to the problem would

combine the two methods. Thus the overall area distributions must be
such as to give as low a value as possible for the total wave drag, according

to the area rule at the design Mach number; while the detailed shaping
of the wing and fuselage must at the same time yield the desired isobar

pattern. This process would clearly involve appropriate variations in the
wing thickness distribution and in the cross-sectional shape of the fuselage.
The former approach has been used with success at subsonic speeds by

Haines(12), without the need for any fuselage shaping; it must be empha-
sized that at higher speeds this can no longer be sufficient in itself because

of the necessity of achieving satisfactory overall area distributions. The

latter approach—combining the area rule with fuselage cross-section
shaping to give the desired junction pressure distribution—has been tried

by McDevitt(11), but he was not successful in obtaining any additional
reduction in drag by this method. Thus there is scope for further develop-

ments in this field; though in the meantime it can safely be said that either
the area rule or the Kiichemann–Bagley method does give a close approxi-

mation to the desired conditions, at least in the transonic speed range.

5. LIFTING EFFECTS

The final stage in the design process is to continue the shaping of the
wing and fuselage so that, at the design lift coefficient, the desired type of

pressure distribution is achieved on the wings. In order to do this, we first
choose a suitable chordwise loading distribution

— /($) (3)

and apply it at all spanwise positions to the wing planform, suitably con-

tinued through the fuselage. Following the method of Richardson and
Parry"3 ), it is then possible to calculate the complete flow field due to this

loading distribution. Thus the velocity perturbation u is given (cf. ref. 14) by
u = grad 0, where (at supersonic free-stream Mach numbers)

.

Ov,
U, z dx1 dy1 	
4,7 J Ry  _L_.7:2]RA. )2 /32 01 y02 _fi2z21112

(4)
.Y) /()

x --A-1(y)

(. 0)
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and

the integration is to be carried out over all points (x„yi) of the wing plan-
form lying within the Mach forecone of the point(x,y,z).

In particular, we can find the downwash in the mean plane (z = 0)
of the exposed wing, and thus determine the camber surface of the wing,
and we can shape the fuselage so that this also becomes a stream surface

A Design lift coefficientDesign Mach number
0 • 2/1\1.0

Y

\Upper surfaceLower surface--

1

I
I

Wing o
incidence e

a 6°

4°

2° r

0  I

06
a 40

2° h"--

0

FIG. 12. Asymmetric fuselage shaping and wing twist: effect of alternative planforms.

for the desired loading distribution; the latter calculation may be simpli-

fied by replacing the actual fuselage by a mean circular of constant radius

R„, calculating the normal component of velocity induced on it, and hence

the required streamwise slope of the fuselage. Since the disturbance po-

tential 0 due to a planar loading distribution of this type is antisymmetric
with respect to z, the sidewash r is also antisymmetric while the upwash
w is symmetric. It follows that the resulting fuselage shape is also asym-

metric about the wing plane; relative to the original shape determined

(as in Section 4) from thickness considerations, more waisting will usually

be required above the wing and less below it, the total cross-sectional

area remaining the same. A similar scheme, but based on weaker theo-

retical foundations, has been tried with success by Palmer and othersu5),

and yet another by Lock and Rogers".
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The detailed shape of wings and fuselage produced by this process is
extremely sensitive, particularly near the wing-fuselaae junction, to the
way in which the wing planform is assumed to continue through the fuse-
lage. This is illustrated in Fig. 12, which sketches the effect of three pos-
sible choices. In the first case (A), little or no additional fuselage shaping

is required, but because of the kink in the planform at the fuselage side
the downwash in the plane z = 0 and therefore the local wing incidence
there have a logarithmic infinity. This difficulty can be partially over-
come, as suggested by Weber(20), by calculating the downwash at f
where z, is half the local wing thickness; but the resultant incidences
remain very high and change rapidly with y near the junction. At the
other extreme (B), where the assumed planform is fully swept up to the
centre line, the wing twist is small but the differential waisting required
is larae. It may in fact be shown that in this case, for a basically untapered

ing, the sidewash V at the junction is given by*

y (--- for I >0 \
-- = -T- —1- tan MO
U, 4 + for z < 0)

so that the required change in the fuselage lateral (y) dimension is

	

Ay 1
- = ±  4 tan (PLM

where

= I 1(x)dx (7)

In particular the "step" in the fuselage at the trailing edge is of width -IsCCL

tan 0, and for a typical design lift coefficient of 0.2 and sweepback 550
this is about one tenth of the wing root chord or half the basic fuselage
radius.

A third possibility (C), which is intermediate in every sense between
(A) and (B), is to leave the assumed wing planform unswept inside the
fuselaae. There is still a kink in the planform at the fuselage side, but it
is only half as big as in (A), so that the wing twist required is approxima-
tely halved while the fuselage indentation is (exactly) half that in case (B).
It is suggested that this arranaement may form a practical compromise
in many cases, but it is of course possible, by further variation of the
planform inside the fuselage in a similar way, to alter the relative amounts
of wing twist and fuselage indentation as desired; provided only that the
total magnitude of these two alternative devices is adequate to produce
the required effect on the flow and pressure distribution.

* This result is independent of Mach number.
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Calculations of the normal component of velocity induced on the fuse-
lage show that the cross-sections of the upper and lower halves are approxi-
mately elliptical. The values of the downwash in the vertical plane of
symmetry (y = 0) suggest that the fuselage should be cambered as shown
in Fig. 13 for a typical case; but in practice there seems no reason to unload
the forward part of the fuselage in this way, and a uniform fuselage in-
cidence would probably be adopted.

The choice of the chordwise loading 1() is also of great importance,
but at present it is no means clear how this should best be done in general.
But when the wing is basically untapered over much of the span, the fol-
lowing procedure is suggested. Having chosen our basic two-dimensional

FUSELAGE' t

Suggested modified fusekige centre line

z/c 0-I 0- I

CL 0.2 0-2




0-3 0 • 3

FIG. 14. A typical fuselage camber line.

section as explained in (2), we use its camber line to calculate a loading
function 4( ) by linearized thin wing theory at the (subsonic) Mach number
M„= Mo cos 0 and lift coefficient C, sec2 0; note that 10(e) will differ
from the full potential theory loading. These steps are illustrated in Fig. 13.
We then take the loading function for our actual three-dimensional wing
to be

1(0 = 4(;) cos24 (8)

The advantage of this procedure can be seen by considering the simpler
problem of designing an infinite yawed wing of sweepback 0, supposing
that we are allowed to use only the techniques of linearized theory. It is
clear that the mean camber surface iesulting from the choice of loading (8)
will be just that required to give the desired section normal to the leading
edge, designed by the more powerful methods that are available in two
dimensions. It is in fact found in practice that when the method is applied
to a finite wing, the shape of the centre portion of each half span turns

0-5
(constant incidence 2-4° for CL 0.2)

0 x/c



272 R. C. LOCK and E. W. E. ROGERS

out to be almost identical to that of the corresponding infinite wing; the
three-dimensional effects occur chiefly as end corrections at the root and
tips. Thus there is good reason to hope that in this way some of the more
important non-linear effects in the design of the wing camber surface
may be allowed for. The load distributions that are arrived at are of the
form, standard in two-dimensional thin wing theory

/ 1 

i(e) (a0H-a1- Fa2e2+ ..) (9)

Unfortunately, a satisfactory numerical procedure for calculating the
full flow field from equation (4) with loadings of this type is not yet avail-
able, and up to the present most of the work at supersonic Mach num-
bersu") has been restricted to simple loadings of the type

1() = (10)

These have the defect that the downwash becomes logarithmically infinite
at subsonic leadina edges, and so the resulting section shapes are far from
ideal. In spite of this, a model designed on these lines has shown that
the desired type of flow—with the wings free from shock waves—can in
fact be obtained up to a Mach number of 1-2 and a lift coefficient of 0-25,
with a wing of asnect ratio 3.5 and 55° sweep; and lift-drag ratios were
obtained corresponding to full scale values between 11-5 and 12.

In order to make use of the further improvements which should be
obtainable with more general loadings (equation (9)), it is at present neces-
sary to employ the simplified form taken by equation (4) when  Mo = 1.
With loadings of type (10) it has been found that the wing shapes thus
obtained do not vary much with design Mach number in the range  M„ =-
1-1-2, so that the simplification should not seriously invalidate the pro-
posed method over this speed range. It is then possible to obtain the up-
wash w in the wing plane directly in the form

1 i• 1(x,, y1)dx, dy,
w(x, y, o) (11)

4.7r .1 (y—Y1)2
x;

the integral being taken over that part of the (x1,y1) plane ahead of the
point  (x,y,o).  Transforming the variables (x1,y1) to (E,y1), this becomes

1 r c(y1) 1(e) de dY1
w 4:7 J —Y02

and integrating this with respect to OEwe obtain

y (x)
1  w — r c(yi)L($*)d.)'1

4.7 (Y—Y1)2




- (x)
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DESIGN LIFT COEFFICIENT0-2

DESIGN MACH NUMBER 1- 0

Streamwisewing section6-9°thick
The section is designed to
give a 'roof -top'pressure
distribution on the upper

sur face back to 50°4chord.
The wing flow should be
sub-critical up to a
Mach number of about 1-15

WING
INCIDENCE
a

20
10

0

FIG. 15. A typical wing-fuselage design.

where ;*(.v, y,) = 	
c(h)

is the distance from the leading edge, meas-

ured as a fraction of the local chord, of the point  (x,y,,o)  and  L  is defined
by equation (7).

18



274 R. C. LOCK and E. W. E. ROGERS

This integral (13) is remarkably similar, both in the nature of the
singularity in the denominator and in the behaviour of the numerator at
the leading edge, to an integral occurring in the subsonic linearized theory
of symmetrical aerofoils in two-dimensional flow. It is therefore possible
to adapt the method which has been developed by Multhopp and Weber(19)
for numerical calculation of the singular integral; this involves only the
computation of the numerator in (13) at certain predetermined points
along each line x = constant, the corresponding values of w being obtained
at the same points by a simple double summation process.

It is not possible to give full details of this process here; but in con-
clusion we will quote some results that have been obtained for a typical
example (Fig. 15). The wing planform corresponds to (C) of Fig. 8, with
a basic sweep of 55° and aspect ratio 3.5. The streamwise wing sections
are 6.9% thick (12% thick normal to the straight part of the leading edge),
and were designed to have a "roof-top" pressure distribution back to 50%
chord at the design lift coefficient 0.2. The basic fuselage is cylindrical
in the neighbourhood of the wing junction and has a radius equal to one
fifth of the wing root chord. Although the design was carried out, as de-
scribed above, using sonic theory, the pressure distribution on the wing
should remain sub-critical up to a Mach number of about 1.15, provided
of course that the design method is successful in dealing with the end
effects.

The most remarkable feature of the final shape of the wing and fuselage
(Fig. 15) is the lack of any extremes of wing warp or fuselage waisting.
The relatively small minimum width of the upper half of the fuselage (at
the wing trailing edge) would probably present the greatest practical ob-
jection to the design, but it is possible that this could be relaxed without
serious effects on aerodynamic efficiency, and in any case an increase
in wing twist near the root would provide a possible alternative. A model
based on this design is being manufactured and will be tested shortly
at the National Physical Laboratory as part of an extensive research pro-
gramme in this field. Later models will be used to investigate the efficacy
of some refinements in section design(2) when applied to highly swept
wings, and to see how similar ideas can be applied to wings with basically
tapered planforms.
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